91 research outputs found

    Hot interstellar gas and ionization of embedded clouds

    Get PDF
    Researchers present detailed photoionization calculations for the instellar cloud in which the Sun is embedded. They consider the EUV radiation field with contribution from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10 to the 6th power k coronal substrate. They establish lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.29 respectively. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10 to the 6th k plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N (CIII)/N (CII) and N (NII)/N (NI) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. Spacecraft such as Lyman which is designed to obtain high resolution spectral data down to the Lyman limit at 912 A could sample interstellar lines of these ions

    Revisited abundance diagnostics in quasars: Fe II/Mg II ratios

    Get PDF
    Both the Fe II UV emission in the 2000- 3000 A region [Fe II (UV)] and resonance emission line complex of Mg II at 2800 A are prominent features in quasar spectra. The observed Fe II UV/ Mg II emission ratios have been proposed as means to measure the buildup of the Fe abundance relative to that of the alpha-elements C, N, O, Ne and Mg as a function of redshift. The current observed ratios show large scatter and no obvious dependence on redshift. Thus, it remains unresolved whether a dependence on redshift exists and whether the observed Fe II UV/ Mg II ratios represent a real nucleosynthesis diagnostic. We have used our new 830-level model atom for Fe+ in photoionization calculations, reproducing the physical conditions in the broad line regions of quasars. This modeling reveals that interpretations of high values of Fe II UV/ Mg II are sensitive not only to Fe and Mg abundance, but also to other factors such as microturbulence, density, and properties of the radiation field. We find that the Fe II UV/ Mg II ratio combined with Fe II (UV)/ Fe II (Optical) emission ratio, where Fe II (Optical) denotes Fe II emission in 4000 - 6000 A can be used as a reliable nucleosynthesis diagnostic for the Fe/Mg abundance ratios for the physical conditions relevant to the broad-line regions (BLRs) of quasars. This has extreme importance for quasar observations with the Hubble Space Telescope and also with the future James Webb Space Telescope.Comment: kverner.gzip, 9 pages, f1-5.eps; aastex.cls; aastexug.sty, ApJL in pres

    Local Interstellar Medium. International Astronomical Union Colloquium No. 81

    Get PDF
    Helium and hydrogen backscattering; ultraviolet and EUV absorption spectra; optical extinction and polarization; hot gases; soft X-ray observations; infrared and millimeter wavelengths; radio wavelengths and theoretical models of the interstellar matter within about 150 parsecs of the Sun were examined

    Discovery of CH and OH in the -513 km s-1 Ejecta of Eta Carinae

    Full text link
    The very massive star, Eta Carinae, is enshrouded in an unusual complex of stellar ejecta, which is highly depleted in C and O, and enriched in He and N. This circumstellar gas gives rise to distinct absorption components corresponding to at least 20 different velocities along the line-of-sight. The velocity component at -513 kms-1 exhibits very low ionization with predominantly neutral species of iron-peak elements. Our statistical equilibrium/photoionization modeling indicates that the low temperature (T = 760 K) and high density (n_H=10^7 cm^-3) of the -513 kms-1 component is conducive to molecule formation including those with the elements C and O. Examination of echelle spectra obtained with the Space Telescope Imaging Spectrograph (STIS) aboard the confirms the model's predictions. The molecules, H_2, CH, and most likely OH, have been identified in the -513 kms-1 absorption spectrum. This paper presents the analysis of the HST/STIS spectra with the deduced column densities for CH, OH and C I, and upper limit for CO. It is quite extraordinary to see molecular species in a cool environment at such a high velocity. The sharp molecular and ionic absorptions in this extensively CNO- processed material offers us a unique environment for studying the chemistry, dust formation processes, and nucleosynthesis in the ejected layers of a highly evolved massive star.Comment: tentatively scheduled for the ApJ 1 September 2005, v630, 1 issu

    The Low Velocity Wind from the Circumstellar Matter Around the B9V Star sigma Herculis

    Full text link
    We have obtained FUSE spectra of sigma Her, a nearby binary system, with a main sequence primary, that has a Vega-like infrared excess. We observe absorption in the excited fine structure lines C II* at 1037 A, N II* at 1085 A, and N II** at 1086 A that are blueshifted by as much as ~30 km/sec with respect to the star. Since these features are considerably narrower than the stellar lines and broader than interstellar features, the C II and N II are circumstellar. We suggest that there is a radiatively driven wind, arising from the circumstellar matter, rather than accretion as occurs around beta Pic, because of sigma Her's high luminosity. Assuming that the gas is liberated by collisions between parent bodies at 20 AU, the approximate distance at which blackbody grains are in radiative equilibrium with the star and at which 3-body orbits become unstable, we infer dM/dt ~ 6 * 10^-12 M_{sun}/yr. This wind depletes the minimum mass of parent bodies in less than the estimated age of the system.Comment: 6 pages, 3 figures, ApJ in pres
    corecore